已经连续很多天 “没有” 时间看课程视频了。回过头看,其实从课程视频中获得的信息是十分有限的,现在已经进入了和预期一致的、开始看就会走神的状态,简直和真实的上课状态一模一样。
从一开始的目的来说,我是希望可以通过 “正统” 的视频课程,系统地了解某一门课程的内容,以不至于落后于还在深入学业的同学。但其实,至少对我来说,真正有用的东西大多不是从学校或者课堂学到的。我应该学会不再在乎这样的比较。
有很多不同领域的、有趣的、有价值的视频和内容,都值得被关注。当时间从一开始可以随意浪费,到把时间用来看美剧,到只能把时间用来看课程视频,到连续 1 小时的视频课程视频都没有耐心看完……
开始于 01.11,结束于 05.15。时间有点短了,原准备连续 3 年的。(为什么是 3 年呢 :P
我计划把一些公开课作为学习渠道、有规律地看完,就像列一个课程表一样,而不像其他内容仅仅是消遣,随心所欲地想哪儿就哪儿。我也不知道能坚持多长时间,可能是一天,也可能是一年。因为没有课后作业和考试,时间充足的情况下,应该不会有压力。当然,课程内容不会局限于计算机科学领域。
由于现实环境的不可预测性质,课程表不能规定的太严格,但是公开课又太多了,必须保证足够的进度。初步规则为:
关于多门课同时进行的发现(图):
1
Title | Intrduction to Computer Science and Programming in Python |
---|---|
No. | 6.0001, Fall 2016 |
Date | 2021.01.11 ~ 2021.01.29 (12 lectures) |
Lecture 1 | What is Computation? |
Lecture 2 | Branching and Iteration |
Lecture 3 | String Manipulation, Guess and Check, Approximations, Bisection |
Lecture 4 | Decomposition, Abstraction, and Function |
Lecture 5 | Tuples, Lists, Aliasing, Mutability, and Cloning |
Lecture 6 | Recursion and Dictionaries |
Lecture 7 | Testing, Debugging, Exceptions, and Assertions |
Lecture 8 | Ojbect Oriented Programming |
Lecture 9 | Python Classes and Inheritance |
Lecture 10 | Understanding Program Efficiency, Part 1 |
Lecture 11 | Understanding Program Efficiency, Part 2 |
Lecture 12 | Searching and Sorting |
2 (2.1)
Title | Intrduction to Computational Thinking and Data Science |
---|---|
No. | 6.0002, Fall 2016 |
Date | 2021.01.30 ~ 2021.02.23 (15 lectures) |
Lecture 1 | Introduction, Optimization Problems |
Lecture 2 | Optimization Problems |
Lecture 3 | Graph-theoretic Models |
Lecture 4 | Stochastic Thinking |
Lecture 5 | Random Walks |
Lecture 6 | Monte Carlo Simulation |
Lecture 7 | Confidence Intervals |
Lecture 8 | Sampling and Standard Error |
Lecture 9 | Understanding Experimental Data |
Lecture 10 | Understanding Experimental Data (cont.) |
Lecture 11 | Introduction to Machine Learning |
Lecture 12 | Clustering |
Lecture 13 | Classification |
Lecture 14 | Classification and Statistical Sins |
Lecture 15 | Statistical Sins and Wrap Up |
3 (2.2)
Title | The Film Experience |
---|---|
No. | MIT 21L011, Fall 2013 |
Date | 2021.01.30 ~ 2021.03.17 (30 lectures) |
Lecture 1 | Introduction to MIT 21L011 |
Lecture 2 | Keaton |
Lecture 3 | Chaplin, Part I |
Lecture 4 | Chaplin, Part II |
Lecture 5 | Film as Global & Cultural Form; Montage, Mise en Sciene |
Lecture 6 | German Film, Murnau |
Lecture 7 | The Studio Era |
Lecture 8 | The Work of Movies; Capra & Hawks |
Lecture 9 | Alfred Hitchcock |
Lecture 10 | Shadow of a Doubt, Reat Window |
Lecture 11 | The Musical |
Lecture 12 | The Musical (continued) |
Lecture 13 | The Western |
Lecture 14 | The Western (continued) |
Lecture 15 | American Film in the 1970s, Part I |
Lecture 16 | American Film in the 1970s, Part II |
Lecture 17 | Renoir and Poetic Realism |
Lecture 18 | Renoir’s Grand Illusion |
Lecture 19 | Italian Neorealism, Part I |
Lecture 20 | Italian Neorealism, Part II |
Lecture 21 | Truffaut, the Nouvelle Vague, The 400 Blows |
Lecture 22 | Kurosawa and Rashomon |
Lecture 23 | Summary Perspectives - Film as Art and Artifact |
Record | Meet the Educator |
Record | Why Study Film? |
Record | Approach to Lecturing |
Record | The Film Experience: A Course in Transition |
Record | The Video Lecture Conundrum |
Record | Beyond Film: Television & Literature |
Record | Thematic Spines of the Course |
4 (2.2.2)
Title | Music and Technology |
---|---|
No. | 21M.380, Fall 2009 |
Date | 2021.02.20 ~ 2021.02.26 (4 lectures) |
Lecture 13 | Contemporary History and Aesthetics |
Lecture 12d | Contemporary History and Aesthetics |
Lecture 12w | Contemporary History and Aesthetics |
Lecture 16 | Contemporary History and Aesthetics |
5 (5.1)
Title | Introduction to Psychology |
---|---|
No. | MIT 9.00SC, Fall 2011 |
Date | 2021.03.08 ~ 2021.04.13 (24 lectures) |
Lecture 1 | Introduction to Psychology |
Lecture 2 | Introduction to Psychology |
Lecture 3 | Introduction to Psychology |
Lecture 4 | Introduction to Psychology |
Lecture 5 | Introduction to Psychology |
Lecture 6 | Introduction to Psychology |
Lecture 7 | Introduction to Psychology |
Lecture 8 | Introduction to Psychology |
Lecture 9 | Introduction to Psychology |
Lecture 10 | Introduction to Psychology |
Lecture 11 | Introduction to Psychology |
Lecture 12 | Introduction to Psychology |
Lecture 13 | Introduction to Psychology |
Lecture 14 | Introduction to Psychology |
Lecture 15 | Introduction to Psychology |
Lecture 16 | Introduction to Psychology |
Lecture 17 | Introduction to Psychology |
Lecture 18 | Introduction to Psychology |
Lecture 19 | Introduction to Psychology |
Lecture 20 | Introduction to Psychology |
Lecture 21 | |
Lecture 22 | |
Lecture 23 | |
Lecture 24 |
6 (5.2)
Title | Artificial Intelligence |
---|---|
No. | MIT6.034, Fall 2010 |
Date | 2021.03.12 ~ 2021.04.27 (30 lectures) |
Lecture 1 | Intruduction and Scope |
Lecture 2 | Reasonging Goal Trees and Problem Solving |
Lecture 3 | Based Expert Systems |
Lecture 4 | Search: Depth-First, Hill Climbing, Bean |
Lecture 5 | Search: Optional, Branch and Bound, A* |
Lecture 6 | Search Games, Minimax, and Alpha-Beta |
Lecture 7 | Constraints: Interpreting Line Drawings |
Lecture 8 | Constraints: Search, Domain Reduction |
Lecture 9 | Constraints: Vistual Object Recognition |
Lecture 10 | Introduction to Learning, Nearest Neighbors |
Lecture 11 | Learning: Identification Trees, Disorder |
Lecture 12a | Neural Nets |
Lecture 12b | Deep Neural Nets |
Lecture 13 | |
Lecture 14 | |
Lecture 15 | |
Lecture 16 | |
Lecture 17 | |
Lecture 18 | |
Lecture 19 | |
Lecture 20 | |
Lecture 21 | |
Lecture 22 | |
Lecture 23 | |
Lecture 24 | |
Lecture 25 | |
Lecture 26 | |
Lecture 27 | |
Lecture 28 | |
Lecture 29 | |
Lecture 30 |
7 (5.3)
Title | Design and Analysis of Algorithms |
---|---|
No. | MIT6.046J, Fall 2015 |
Date | 2021.03.14 ~ 2021.05.03 (30 lectures) |
Lecture 1 | Clourse Overview, Interval Scheduling |
Lecture 2 | Divide & Conquer: Convex Hull, Median Finding |
Lecture R1 | Matrix Multiplication and the Master Theoren |
Lecture 3 | Divide & Conquer: FFT |
Lecture R2 | 2-3 Trees and B-Trees |
Lecture 4 | Divide & Conquer: van Emde Boas Trees |
Lecture 5 | Amortization: Amortized Analysis |
Lecture 6 | Randomization: Matrix Multiply, Quicksort |
Lecture 9 | |
Lecture 10 | |
Lecture 11 | |
Lecture 12 | |
Lecture 13 | |
Lecture 14 | |
Lecture 15 | |
Lecture 16 | |
Lecture 17 | |
Lecture 18 | |
Lecture 19 | |
Lecture 20 | |
Lecture 21 | |
Lecture 22 | |
Lecture 23 | |
Lecture 24 | |
Lecture 25 | |
Lecture 26 | |
Lecture 27 | |
Lecture 28 | |
Lecture 29 | |
Lecture 30 | |
Lecture 31 | |
Lecture 32 | |
Lecture 33 | |
Lecture 34 |
8 (5.4)
Title | Mathematics for Computer Science |
---|---|
No. | MIT6.042J, Spring 2015 |
Date | 2021.03.16 ~ 2021.08.31 (111 lectures) |
Lecture 1.1.1 | Welcome to 6.042 |
Lecture 1.1.2 | Intro to Proofs: Part 1 |
Lecture 1.1.3 | Intro to Proofs: Part 2 |
Lecture 1.2.1 | Proof by Contradiction |
Lecture 1.2.3 | Proof by Cases |
Lecture 1.3.1 | Well Ordering Principle 1 |
Lecture 1.3.3 | Well Ordering Principle 2 |
Lecture 1.3.5 | Well Ordering Principle 3 |
Lecture 1.4.1 | Propositional Operators |
Lecture 1.4.3 | Digital Logic |
Lecture 1.4.4 | Truth Tables |
Lecture 1.5.1 | Predicate Logic 1 |
Lecture 1.5.2 | Predicate Logic 2 |
Lecture 1.5.4 | Predicate Logic 3 |
Lecture 1.6.1 | Sets Definitions |
Lecture 1.7.1 | Relations |
Lecture 1.7.3 | Relational Mappings |
Lecture 1.7.5 | Finite Cardinality |
Lecture 1.8.1 | Induction |
Lecture 1.8.2 | Bogus Induction |
Lecture 1.8.4 | Strong Induction |
Lecture 1.8.6 | WOP vs Induction |
Lecture 1.9.1 | State Machines Invariants |
Lecture 1.9.3 | Derived Variables |
Lecture 1.10.1 | Recursive Data |
Lecture 1.10.4 | Structural Induction |
Lecture 1.10.7 | Recursive Function |
Lecture 1.11.1 | Cardinality |
Lecture 1.11.3 | ountable Sets |
Lecture 1.11.4 | Cantor’s Theorem |
Lecture 1.11.7 | The Halting Problem |
Lecture 1.11.9 | Russell’s Paradox |
Lecture 1.11.11 | Set Theory Axioms |
Lecture 2.1.1 | GCDs & Linear Combinations |
Lecture 2.1.2 | Euclidean Algorithms |
Lecture 2.1.4 | Pulverizer |
Lecture 2.1.6 | Revisiting Die Hard |
Lecture 2.1.7 | Prime Factorization |
Lecture 2.2.1 | Congruence mod n |
Lecture 2.2.3 | Inverses mod n |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture |
9 (6)
Title | Introduction to Deep Learning |
---|---|
No. | MIT6.S191 |
Date | 2021.04.15 ~ 2021.06.31 (40 lectures) |
Lecture 1 | Introduction to Deep Learning |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture | |
Lecture |